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Abstract

This paper analyzes the effects of intra-scan motion and demonstrates the possibility of correcting them directly in k-space with a
new automatic retrospective method. The method is presented for series of 2D acquisitions with Cartesian sampling. Using a

reference k-space acquisition (corrected for translations) within the series, intra-scan motion parameters are accurately estimated for
each trajectory in k-space of each data set in the series resulting in pseudo-random sample positions. The images are reconstructed
with a Bayesian estimator that can handle sparse arbitrary sampling in k-space and reduces intra-scan rotation artefacts to the noise
level. The method has been assessed by means of a Monte Carlo study on axial brain images for different signal-to-noise ratios. The

accuracy of motion estimates is better than 0.1� for rotation, and 0.1 and 0.05 pixel, respectively, for translation along the read and
phase directions for signal-to-noise ratios higher than 6 of the signals on each trajectory. An example of reconstruction from ex-

perimental data corrupted by head motion is also given.
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1. Introduction

Subject motion is a major issue in many MRI studies.

Several methods have been proposed to reduce the

motion artefacts in the individual images or in time se-

ries of images [1–13]. Broadly speaking, those methods
either aim at reducing the motion at acquisition (use of

gating or triggering and/or use of ultra-fast imaging

techniques) or following acquisition (post-processing).

The post-processing methods aim at estimating the

motion-free images from the motion-corrupted data

sets. Data corruption occurring between successive ac-

quisitions of imaging volumes in a time series is dealt

with with inter-scan motion correction procedures. The
latter assume for simplicity that no (intra-scan) motion
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occurs during acquisition of the data pertaining to the

individual volumes. This hypothesis may in certain cases

be optimistic and considerable improvements in image

quality may be expected if intra-scan motion is also

corrected for. In the present paper, we therefore address

the problem of intra-scan motion correction, under the
simplifying assumption that no motion occurs during

the measurement of the data along the successive tra-

jectories in k-space. To simplify matters, we have dealt
with in-plane, intra-scan motion. We determine the in-

plane translations and rotations that occurred between

measurements of the data along the successive trajec-

tories in k-space, correct for these motions and eventu-
ally estimate the motion-free image.
Several methods have been proposed to tackle the

different challenges involved in intra-scan motion

detection and correction. The correction of in-plane

intra-scan translations has been reported in [1–4,14].

Navigator echoes in association with markers [5] or with
erved.
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a circular sampling scheme [6,7] have been proposed for
determining rotational and translational motion. Re-

cently, spherical navigator echoes have been introduced

[8] in order to address the inability of the orbital navi-

gator echo to measure motion out of its plane. Intra-

scan rotation leads to pseudo-randomly sampled k-space
[15,16]. Several reconstruction techniques to compensate

for artefacts caused by small angle rotations [9,10], or

with no limitations on the extent of the rotation angles
using either the projection onto convex sets (POCS)

[11,13] or a comparison with a reference k-space [12,15–
17], have been reported.

In the present study, we show that estimating and

correcting retrospectively intra-scan motion is feasible

from the information available in k-space [12,15,16].
Two main issues are addressed: (1) the automatic esti-

mation of motion parameters from k-space data along
individual trajectories and (2) the accurate reconstruc-

tion of images from pseudo-randomly sampled k-spaces.
First, the intra-scan translation and rotation parameters

for each data-set in a series are estimated by comparing

the potentially corrupted data-set with a reference ac-

quisition chosen within the series; note that the latter is

first corrected for translations. Due to the rotation effects,

the resulting �true� sampling grid is pseudo-random. Fi-
nally, after translation correction, the �motion-free� im-
age is reconstructed using the �true� sampling grid. The
image reconstruction uses Bayesian estimation, origi-

nally developed to deal with under-sampled and irregular

MRI acquisitions [12,16,18,19]. The present analysis has

focused on 2D acquisition with Cartesian sampling

(spin-warp imaging). The extension of the method to 3D

acquisition with EPI-like techniques is briefly discussed.
In the first part of the paper, the effect of in-plane

intra-scan motion is discussed, and the algorithm pro-

posed for motion correction is described in detail. In the

second part of the paper, the performance of the motion

estimators on axial brain images in the presence of noise

is assessed using a Monte Carlo approach and the esti-

mators are �tuned�.
2. Method

2.1. Two-dimensional intra-scan motion effects in k-space

Consider a 2D Cartesian sampling grid GC in k-space
made up of N rectilinear trajectories (Fig. 1a) and

SrefðkÞ, the reference MRI signal from a solid and static
object. Each in-plane gross movement can be described

in terms of a rotation Ra of angle a about the centre of
the field of view (FOV) and a translation vector T. As-

suming that the motion occurs between measurements

of the successive rectilinear trajectories, the corrupted

signal Saj;TjðkjÞ along the jth trajectory is a function of
the reference signal Sref
Saj;TjðkjÞ ¼ SrefðR�1
aj
kjÞ exp½�2ipðR�1

aj
kjÞ:Tj�; ð1Þ

where Tj and Raj , respectively, the translation vector

and the rotation operator for the rotation of angle aj

about the centre of the FOV, describe the position of the

object during the acquisition of the jth echo. Our al-
gorithm is directly based on the analysis of this equa-

tion. It can be deduced from Eq. (1) that: (1) a

translation of the object induces a phase term which is
linear along the readout direction and depends on the

rotation; and (2) a rotation Raj of the object in image

space is equivalent to a rotation Raj of the signal about

the centre of k-space. While the signal magnitude is only
affected by the rotation, the phase of the signal is

modified by both rotation and translation. Thus the

phase difference between Saj;TjðkjÞ and SrefðR�1
aj
kjÞ in-

duced by the translation Tj is linear

Uaj;TjðkjÞ ¼ �2p½R�1
aj
kj�:Tj: ð2Þ

The components Tjx and Tjy of the translation vector
are, respectively, the component along the jth trajectory
direction (readout direction) and the component per-

pendicular to the readout direction (phase encoding di-

rection). As different intra-scan rotations may occur

during the scan time, the signals are acquired in k-space
on non-parallel directions leading to pseudo-random

sampling [12,16] (Fig. 1b). In the following, this pseudo-
random acquisition grid will be noted Ga. Consequently,

if directly applied, the 2D-FFT reconstruction leads to

artefacts in the images.

2.2. Motion correction algorithm

To correct for in-plane intra-scan gross motion, the

method has to compensate the linear phase variations
along the acquisition trajectories ofGa and to reconstruct

the image considering that the signal has been sampled

on an pseudo-random grid Ga. The algorithm compares

the motion-distorted signal Saj;TjðkjÞ to the reference
signal SrefðkjÞ so that the motion parameters for each
trajectory j can be estimated. This information is then
used to reconstruct the motion-free image. We therefore

assume that a reference signal SrefðkjÞ has been acquired
or estimated. The algorithm thus involves five steps:

(1) Construction of the reference signal.

(2) Estimation of the rotation angle set fajg,
j 2 f�N=2þ 1;N=2g. The estimated angles âaj define
an estimated acquisition grid ĜGa.

(3) Estimation of the 2N translation parameters Tjx, Tjy
using the estimated acquisition grid ĜGa. This leads to

the estimates T̂Tjx and T̂Tjy .
(4) Compensation of the linear phase shifts induced by

the translations on the estimated grid ĜGa.

(5) Reconstruction of the image with a Bayesian estima-

tor using the translation-corrected signal sampled on

the estimated sampling grid ĜGa.



Fig. 1. (a) Cartesian sampling grid GC and (b) rotation-corrupted grid Ga. (c) Shepp–Logan phantom in the k-space with intra-scan rotations
simulated by rotating each trajectory of k-space with random angles characterized by a Gaussian distribution (l ¼ 0, r ¼ 1:0�). (d) k-Space after
Bayesian reconstruction of the rotation-corrupted k-space in (c).
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These steps are described in detail in the following

sections.

2.2.1. Construction of the reference signal

A priori, motion is expected to distort all images in a

series. A difficulty in correcting intra-scan motion,
therefore, is the lack of an ideal reference signal, i.e., a

signal acquired without any motion distortion. Since the

estimation of the motion parameters relies on a com-

parison of the reference signal with the distorted one,

the accuracy of the estimates will depend on the quality

of the reference signal. The first step of the algorithm

therefore aims at optimizing the quality of one partic-

ular acquisition in the series (for instance the first one)
by correcting the artefacts due to the translations (this

operation does not require any reference signal) and use

the corrected data as reference data for the series. To

correct the translation-induced linear phase differences

of the signals along k-space trajectories, we have used
our own implementation of the algorithm of Gerchberg
and Saxton [1,3,20]. Details concerning our translation

estimation algorithm will be presented in the following

section.

2.2.2. Estimation of the rotation angles

To estimate the rotation angles fajg, the magnitudes
of the distorted signal jSaj;TjðkjÞj and of the reference
signal jSrefðkjÞj are compared for each trajectory j. Note
that translation does not affect the magnitude of the

distorted signal (see Eq. (1)). The comparison is done by

maximizing the correlation coefficient CjðhÞ between
jSaj;TjðkjÞj and the reference signal, regridded on the
rotated grid Gh: jSrefðR�1

h kjÞj (Rh is the rotation operator

of angle h). A gridding algorithm [12,19,21,22] was used
to resample the reference signal onto the rotation-

corrected grids. Because resampling is done from a

Cartesian (rectangular) grid onto an irregular grid, the

error induced by the gridding algorithm is negligible

[19,23,24], see gridding section below. For each tra-

jectory j, the maximum of CjðhÞ is first estimated by
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calculating it for M different rotation angles h. The
maximization is then refined by fitting CjðhÞ with a
polynomial of degree 2. In practice, 80 values (M ¼ 80)
of h were chosen in the range ½�5�;þ5�� corresponding
to the expected motion range occurring in, e.g., fMRI.

This first step leads to the estimated angle set f bajajg
and defines the estimated acquisition grid ĜGa. Informa-

tion regarding the rotations is also required to estimate

the translation parameters since the rotations indirectly
modify the phase of the signal (see Eq. (2)).
2.2.3. Estimation of the translations and compensation of

the linear phase shifts

Equation (2) indicates that in order to correct the

translation effects, the algorithm has to compensate the

linear phase Uaj;TjðkjÞ induced by the translation along
each trajectory of the acquisition grid Ga. This phase
must be separated from the object signal-phase. There-

fore, the phase of the reference signal SrefðkjÞ is com-
pared with the one of the distorted signal Saj;TjðkjÞ. This
operation requires that both signals be sampled on the

same grid Ga. Thus SrefðkjÞ must first be resampled on
the grid ĜGa. This operation is also done using the grid-

ding algorithm. Finally, the phase due to translation

motion is obtained by computing

Uaj;TjðkjÞ ¼ � arg SrefðR�1
âaj
kjÞðSaj;TjðkjÞÞ

�
n o

: ð3Þ

One way to estimate the translation Tj would be to

linearly fit the phase Uaj;TjðkjÞ as a function of kj. In
order to avoid unwrapping process which may be diffi-

cult for low signal-to-noise ratios, we preferred to fit

sinðUaj;TjðkjÞÞ as a function of kj using a nonlinear least
squares minimisation (Marquardt algorithm). In this

way, the phase Uaj;TjðkjÞ is estimated for each trajectory
j, providing ÛUâaj;T̂Tj

ðkjÞ. The linear phase of the signal
Saj;TjðkjÞ is finally compensated by means of the phase
factor ÛUâaj;T̂Tj

ðkjÞ leading to ŜSajðkjÞ:
ŜSajðkjÞ ¼ Saj;TjðkjÞ expðiÛUâaj;T̂Tj

ðkjÞÞ: ð4Þ

After this step, the signal ŜSajðkjÞ remains affected only
by the rotation. Thus, the image can be reconstructed by

a method capable of processing pseudo-randomly sam-

pled data.
2.2.4. Reconstruction of the image on a Cartesian grid

The correction of rotational motion requires resam-

pling the k-space signal ŜSajðkjÞ, j ¼ 1;N from the esti-
mated grid ĜGa to a Cartesian grid GC.
Gridding. Because extensive use was made of grid-

ding, a few points deserve to be addressed. One can

distinguish two cases: (1) Gridding from a Cartesian

(rectangular) grid onto an irregular grid, hereafter re-

ferred to as reverse gridding. (2) Gridding from an ir-

regular grid onto a Cartesian grid, hereafter referred to

as conventional gridding. The accuracy of gridding de-
pends on the accuracy of the concomitant sampling
density correction. In case 1 there is no need for the

sampling density compensation because each Cartesian

grid-point represents the same area (in 2D). The sam-

pling density compensation for case 2 can be problem-

atic, especially for randomly positioned grid-points. As

a consequence, reverse gridding can be much more ac-

curate than conventional gridding. In fact, it amounts to

sinc-interpolation (Shannon theorem), the accuracy of
which can be adapted to the task at hand by proper

setting of its parameters [23,24]. We mention here that

simulation of rotation of k-space grid-points was done
with reverse gridding too.

Moreover, because a pseudo-random sampling dis-

tribution is not a shah function, its Fourier Transform

(FT) is not periodic. Furthermore, the FT of a sparse

sampling distribution (i.e., barely satisfying the Nyquist
condition) exhibits interpolation artefacts within, as well

as outside, the FOV [12,16,19]. Since gridding is unable

to attenuate interpolation artefacts within the FOV, it is

not well suited to resample pseudo-randomly and spar-

sely sampled k-space signals. Therefore, we resort to a
Bayesian estimation [12,18,23,25,26] which enables re-

construction from arbitrary sample positions in k-space.
Bayesian estimation. The Bayesian reconstruction

method has been described in detail in [12,19,27,28].

Briefly, the reconstruction algorithm aims at determin-

ing the image I on a Cartesian grid given the signal and
available prior knowledge, which maximizes the pos-

terior probability density function P ðI jSÞ, where I and S
are the reconstructed image and measured k-space signal
on the grid Ga, respectively. This leads to the image I
which is the most probable image given the signal S.
Using the Bayes-theorem, PðI jSÞ may be written as
follows

P ðI jSÞ ¼ P ðSjIÞP ðIÞ
P ðSÞ : ð5Þ

We may equally well, maximize log P ðI jSÞ instead of
P ðI jSÞ, and so our aim is to calculate
max

I
flog P ðSjIÞ þ log P ðIÞg: ð6Þ

In the above, the evidence P ðSÞ was treated as a
constant because it does not depend on I . The prior,
P ðIÞ, describes any a priori knowledge we have about
the image. In this case, a Lorentzian distribution of
nearest-neighbour intensity differences was used for the

prior. P ðSjIÞ is the likelihood function and describes the
influence of the measurement noise. The algorithm it-

eratively modifies the image I according to the Lo-
rentzian model while preserving the measured signal S.
The likelihood. The k-space signal and image are re-

lated to each other through the 2D Fourier-transform.

In addition, the samples in k-space are contaminated by
additive, white, Gaussian noise with zero mean and

standard deviation r. We therefore model our data as
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s ¼ T i þ n; ð7Þ
in which Tm;n ¼ expð�2piðxnkxm þ ynkymÞÞ and n is the
measurement noise. For ease of notation, we have re-

written the image and data matrices as vectors by

stacking their respective columns on top of each other.

ðxn; ynÞ are the locations of the pixels, which are assumed
to be distributed uniformly over a Cartesian grid. Ar-

bitrary, irregular sample positions ðkxm ; kymÞ are allowed.
Should the ðkxm ; kymÞ coincide with a Cartesian grid, T
reduces to a 2D FFT. When the ðkxm ; kymÞ are pseudo-
random, straight-forward calculation of T i is very ex-
pensive. A solution to this problem is to use the reverse

gridding algorithm. The matrix T is then the product of
a regridding matrix with a 2D FFT matrix. Note that T
transforms from a Cartesian grid in image space onto an

irregular grid in k-space. Hence, estimation of sparse
random-sampling density compensation is obviated,
yielding increased image quality.

Given the Gaussian nature of the measurement noise

we have the following expression for the likelihood-term

log P ðSjIÞ ¼ � js� T ij2

2r2
: ð8Þ

The prior. Intra-scan rotations cause local under-

sampling, then locally violating Nyquist�s sampling cri-
terion. The consecutive ill-effect can be alleviated by

incorporation of prior knowledge about the image into

the reconstruction algorithm. We exploit the knowledge

that a histogram of intensity differences of nearest

neighbour pixels, xDx;y ¼ Ix;y � Ix�1;y and yDx;y ¼ Ix;y �
Ix;y�1 has approximately a 2D (3D) Lorentzian shape

[12,19,25,29,30]. Note that on purely mathematical

grounds in the context of regularization, one arrives at
the Lorentzian distribution [31–33]. The corresponding

probability distribution for 2D images is

P ðIÞ ¼
Y
x;y

a

2pða2 þ ðxDx;yÞ2 þ ðyDx;yÞ2Þ1:5
: ð9Þ

Substituting Eq. (9) in Eq. (6), while ignoring any

constant terms, we get the following optimization

problem

min
I

js� T ij2

2r2

(
þ 3
2

X
x;y

log a2
n

þ ðxDx;yÞ2 þ ðyDx;yÞ2
o)

:

ð10Þ
The image I which results from Eq. (10) is the recon-

structed image. The minimization is done with the con-

jugategradientmethod.Details concerning the algorithm,
including computational aspects, can be found in [28].
3. Results

In this section, the behaviour of the intra-scan motion

estimator is studied as a function of the signal-to-noise
ratio (SNR). This study is based on a set of 2D axial
brain images presenting simulated intra-scan motion

artefacts.

3.1. Image simulations

To simulate the effect of intra-scan rotation on MR

data, we used the reverse gridding algorithm. Its accu-

racy could be set according to need. This has been as-
sessed using an analytically defined Shepp and Logan

phantom [34]. T tests and F tests on the distorted signals

obtained analytically and by gridding showed not sig-

nificant difference [23,35]. Thus, we conclude that we

may use the reverse gridding algorithm to simulate the

rotation artefacts.

As starting image, we have used an axial brain image

acquired at 1.5T using a conventional FLASH sequence.
The following parameters were used: TE=TR ¼ 40=77ms,
flip angle¼ 30�, slice thickness¼ 7mm, number of aver-
ages¼ 32, FOV¼ 220
 220mm2, matrix¼ 642. The sta-
tistical distributions of the simulated motion parameters

used are Gaussian centred with a standard deviation

ra ¼ 0:5� for the rotations and rT ¼ 0:25 pixel for the
translations (corresponding to a displacement of 0.8mm

for an 64
 64 image with a FOV of 220mm). Finally,
Gaussian noise was added to the complex image to gen-

erate images presenting different signal-to-noise ratios

SNRI . This SNRI was defined as

SNRI ¼
1=Nobject

PNobject�1
n¼0 jI ½n�j

rnoise
; ð11Þ

where Nobject is the number of pixels inside the object I .
We have similarly, defined the SNR in k-space which
will be useful in evaluating the algorithm. For a Carte-

sian-sampled data set, the SNR is larger for the trajec-

tories near to the centre of k-space (low ky values) than
for those near to the edges (high ky values). Conse-
quently, the signal on each trajectory was characterized
by its own SNR, noted SNRk and the motion estimator

performance was studied as a function of SNRk. This

ratio is defined for the jth trajectory by

SNRk ¼
1=N

PN�1
n¼0 jS½kj½n��j
rnoise

; ð12Þ

where N is the number of samples of a trajectory and

rnoise, the standard deviation of the Gaussian noise.

3.2. Optimization of the motion estimators: a Monte

Carlo study

3.2.1. Influence of the noise on motion estimators

The precision of the parameter estimates p̂pj ¼
fâaj; T̂Tjg; j 2 f�N=2þ 1;N=2g depends on the signal-to-
noise ratio SNRk of the trajectory signal considered.

Below a particular threshold SNRT of the signal-to-

noise ratio, the noise-related errors �pj ¼ pj � p̂pj can be



Fig. 2. Behaviour of rotation angle estimator. (a) Statistical estimation

error as a function of the noise level SNRk : mean error l�âa
=ra (�) and

standard deviation error r�âa=ra (error bars). The statistical values were

normalized with respect to the rotation angle standard deviation ra.

(b) Probability of estimating a rotation angle with an error less than

the standard deviation ra of the rotation angle distribution versus the

noise level SNRk ; ra ¼ 0:5�.
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larger than the standard deviation rp of the parameter
distribution itself. In this case, motion correction based

on p̂pj is likely to degrade rather than improve the image.
It is thus preferable to not correct in those cases and to

use p̂pj ¼ 0. The threshold signal-to-noise level, SNRT,
below which the estimate p̂pj is rejected, was defined as
the SNRk value for which the following probability

equation was verified

P ðj�pjðSNRkÞj6rpÞ ¼ P ðjpjj6 rpÞ; ð13Þ

where P represents a probability function. If the motion
parameters are considered to follow normal distribu-

tions, the second term of the Eq. (13) is equal to 0.683.

For each trajectory j, the following rules were applied:
• if SNRk P SNRT, the estimate p̂pj was retained,
• if SNRk < SNRT, the estimate p̂pj was replaced by 0.
Applying these rules produces the new set of esti-

mated parameters f~ppjg. The threshold SNRT was de-
termined by means of a Monte Carlo study as follows.
A set of 160 motion-corrupted brain k-space signals

(64
 64) sampled on different grids Ga and having dif-

ferent levels of Gaussian noise (SNRI in the range

½50; 370�), was simulated. This led to a global set of
10,240 (160
 64) trajectory signals covering a large
range of SNRk. For each k-space, each trajectory signal
resulted from a pseudo-random rotation and translation

with standard deviations ra ¼ 0:5� and rT ¼ 0:25 pixel,
respectively. The global set of 10,240 k-space signals
(10,240 different rotation angles and translations) was

then split into subsets corresponding to SNRk intervals

of 0.1. For each SNRk interval between 0 and 10, we

have thus obtained more than 20 signals whose motion

parameters have been estimated. The subsets were used

to assess the effect of an SNRT threshold on the accu-

racy of the rotation and translation estimations. The
next two paragraphs present the results for each esti-

mator.

3.2.2. Optimization of the rotation estimator

To assess the performance of the rotation estimator,

the mean value l�âa
and the standard deviation r�âa of the

error �âa ¼ aj � âaj were computed from the 10,240 esti-
mates of the rotation angles, as a function of SNRk.
These statistical values were normalized with respect to

the standard deviation ra of the rotation angle distri-

bution. The results in Fig. 2a show that the rotation

estimator is unbiased and that the accuracy (standard

deviation error) of the estimates is better than 0.1� for
SNRk values higher than 6 (80% of the signals with this

data set). Moreover, the standard deviation r�âa becomes

larger than ra for SNRk < 1. The noise threshold SNRT
can also be deduced from the plot of the probability

P ðj�aj6 raÞ for estimating a rotation angle with an error
less than ra versus the noise level SNRk (see Fig. 2b).

The threshold SNRT for which P ðj�aj6 raÞ equals 0.683,
is approximatively 1. In practice the estimated SNRk
overestimates the true SNR because the magnitude of

the signal is used in Eq. (12). This estimation is affected

by an error which depends on the noise level. At low
SNR, the estimated mean value of the signal magnitude

follows a Rician distribution [36]. Thus, if SNRk ¼ 1,
70% of SNRk estimates will be in fact larger than 1 and,

using the threshold SNRT ¼ 1, only 30% of estimated

angles would be rejected instead of 100% expected. In

order to increase this ratio to 90%, we fixed the

threshold SNRT to 2.7. The use of this SNR threshold

leads to a new estimated grid denoted ~GGa.

3.2.3. Evaluation of the translation estimator

The translation estimator was tested similarly as a

function of SNRk. Our studies showed that its behav-

iour is not significantly affected by the error of rotation

estimation. Therefore, the results presented here char-

acterize the translation estimates obtained from simu-

lations including rotations, and using the estimated grid
~GGa. Again, it appears that the estimator is unbiased (see

Fig. 3a and b). For SNRk P 6 the error �T̂Tjx ¼ Tjx � T̂Tjx
on the estimation of Tjx is less than 0.1 pixel and the
error �T̂Tjy ¼ Tjy � T̂Tjy is less than 0.05 pixel. Fig. 3c shows
that there is no need to introduce a noise threshold in

the translation estimator since the probability to esti-



Fig. 3. Behaviour of the translation estimator. Errors on the estimates

Tx (a) and Ty (b) as a function of the noise level SNRk : mean error

l�T =rT
(�), and standard deviations error r�T =rT (error bars). The sta-

tistical values were normalized with respect to the translation standard

deviation rT . The graph (c) shows the probabilities to estimate the

translations Tx and Ty with an error smaller than rT , versus the noise

level SNRk ; rT ¼ 0:25.
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mate the translation with an error lower than the stan-

dard deviation rT is greater than 0.68 even for low SNRk.

3.3. Performance of the motion correction

In order to evaluate the performance of the motion

correction, we have chosen a criterion, based on the root
mean square error in the object [29,30]

NRMSEobjectðIÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Iref þr2I

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
objectðI � IrefÞ2

Nobject
�

P
objectðI � IrefÞ
Nobject

� �2s
;

ð14Þ
where Iref is the reference image to which the image I is
compared, Nobject is the number of pixels in the object.
This root mean square error was normalized with re-

spect to the standard deviation of the noise. In this way,

NRMSEobjectðIÞ is equal to 1 when the two images are
identical apart from the noise. A measure of the ability

of the algorithm to reduce the artefact was defined as the

reduction rate RNRMSE

RNRMSE ¼ 100

NRMSEobjectðIartÞ�NRMSEobjectðIcorrÞ

NRMSEobjectðIartÞ� 1
;

ð15Þ
where Iart and Icorr are the images before and after mo-
tion correction, respectively. So, RNRMSE ¼ 100% if the
artefacts are reduced to a level below the acquisition

noise. This ratio was evaluated for three noise levels

SNRI ¼ f1000; 100; 50g to assess the sensitivity of the
algorithm to the noise. For each noise level, 100 data-

sets were simulated with different sets of motion pa-

rameters (ra ¼ 0:5� and rT ¼ 0:25 pixel as previously
mentioned). Results are presented in the next para-

graphs, following the natural order of the algorithm,

firstly the translation correction, secondly the rotation

correction and finally the global artefact reduction rate.
3.3.1. Performance of the translation correction

The performance of the translation correction was

assessed by means of simulations involving intra-scan
translations and rotations. Therefore, the translation

correction step provides at best an image presenting

rotation distortions only. The RNRMSE was calculated
using the reference image Iref , reconstructed with the
2D-FFT applied on the signal sampled on the Ga grid.

For each SNRI value, the correction of the translation

effect was considered in three cases. First, the translation

correction was performed knowing the true sampling
grid Ga. This case illustrates the ideal one. Then, to

evaluate the efficiency of the SNRT threshold, the al-

gorithm was applied using the estimated grids ĜGa and
~GGa.

The performances of the translation correction are

summarized in the first three columns of Table 1. The

reduction rate of the translation artefacts ranges be-

tween 82 and 97% depending on SNRI . These results
show that the translation correction step is able to re-

duce the artefacts almost completely even at low signal-

to-noise ratio. We note that the estimation error on the

rotation angles affects the translation correction, but the

performance is almost restored when the noise threshold

SNRT is applied for the rotation estimation.
3.3.2. Performance of the rotation correction

To reconstruct the images from signals sampled on

the irregular grids Ga, ĜGa and ~GGa, the Bayesian estimator

was used. The middle three columns of Table 1



Table 1

Reduction rate RNRMSE (%) of the motion artefacts

SNRI Sampling grids

Translation Rotation Global

Ga ĜGa
~GGa Ga ĜGa

~GGa Ga ĜGa
~GGa

1000 97.1 97.1 97.1 97.2 96.8 96.8 96.4 96.4 96.4

100 95.9 95.0 95.0 69.3 51.7 52.0 93.5 91.3 91.4

50 87.8 81.9 84.8 — — 82.9. 58.7 76.0

Reduction rate RNRMSE (%) of the motion artefacts for SNRI ¼ f1000; 100; 50g and for the different steps of our algorithm. The reduction rate
was calculated for the different acquisition grids: Ga the simulated acquisition grid and the estimated grid ĜGa and ~GGa, using, respectively, no noise-

threshold (SNRT ¼ 0) and a noise-threshold (SNRT ¼ 2:7); ra ¼ 0:5� and rT ¼ 0:25 pixel.

Fig. 4. Illustration of the efficiency of the Bayesian estimator for the

image reconstruction. Random rotation effects were introduced by

simulation in a brain acquisition. The standard deviation of the rota-

tion angles is 2�. This distorted acquisition was reconstructed with
three different algorithms: the IFFT (a), the gridding algorithm and

IFFT (c) and the Bayesian estimator (e). Images (b,d,f) show the dif-

ference between each reconstructed image and the rotation-free refer-

ence image. The ratios RNRMSE associated with the images

reconstructed with the gridding algorithm and the Bayesian estimator

are, respectively, 44 and 95%.
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summarize the performance of the rotation correction.

The performance of the Bayesian algorithm was as-

sessed by computing RNRMSE for the three grids. The
reference image Iref thereby used was the motion-free
image reconstructed by 2D-FFT. For high values of the

SNRI (SNRI ¼ 1000), the angles estimated by the ro-
tation estimator and the Bayesian image reconstruction

permit almost complete recovery of the rotation-free

image (RNRMSE ¼ 96:8%). For lower SNRI , the perfor-

mance appears to be reduced (SNRI ¼ 100) or difficult
to interpret (SNRI ¼ 50). This is due to the fact that the
background noise in the image has an intensity similar

to the rotation artefacts. The artefacts generated by

rotation are slightly higher than the noise for
SNRI ¼ 100 and smaller or equal at SNRI ¼ 50.
To illustrate the efficiency of the Bayesian image re-

construction, we present in Fig. 4 brain images

(128
 128) distorted by simulated rotations (in this
case, the standard deviation of the rotation angles is 2�)
and reconstructed with three different algorithms: the

inverse fast Fourier transform (IFFT), the conventional

gridding algorithm and IFFT; and the Bayesian esti-
mator. For the gridding (conventional and reverse) and

Bayesian algorithms, a Kaiser–Bessel window with a

width L ¼ 5 and an overgridding factor fog ¼ 2 was
used. For optimal accuracy, the value of the shape

parameter B of the window was chosen so that B ¼
ðfog � 0:5ÞpL [19,22–24]. For the conventional gridding
algorithm, the sampling density compensation has been

estimated using Voronoi�s cell computation [12,35,37]
based on geometrical considerations.

The reduction rate RNRMSE calculated from these

images show that the artifacts are reduced by only 44%

with the conventional gridding algorithm based on

Voronoi�s sampling density compensation and by 95%
with the Bayesian estimator, with respect to the recon-

structed IFFT image.

Another illustration of the efficiency of our Bayesian
estimator to reconstruct images from rotation-corrupted

k-spaces is shown in Fig. 1. A noiseless Shepp–Logan
phantom in the k-space with intra-scan rotations was
simulated by rotating each trajectory of k-space with



Fig. 5. Intra-scan motion correction of a brain scan acquired with a GRE sequence (TE/TR¼ 40/2000 ms). (a) Reference image. (b) Motion distorted
image. The subject has been requested to rotate the head around the caudo-cranial axis between successive profile measurements in k-space. (c)
Motion-corrected image. (d) Difference image (b–a). (e) Difference image (c–a), the reduction of motion artefacts is clearly visible. The reduction rate

RNRMSE equals 50%.
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random angles having a Gaussian distribution (l ¼ 0,
r ¼ 1:0�) [12,16], see Fig. 1c. The k-space estimated by
our Bayesian estimator is shown in Fig. 1d and exhibits

no difference with the k-space sampled onto the Carte-
sian grid.

3.3.3. Global performance of the algorithm

The overall performance of the method, i.e., after
correction of the translation and rotation effects, is also

presented in Table 1. The reduction rates RNRMSE are
computed using the motion-free image Iref as reference.
The algorithm is able to reduce the intensity of motion

artefacts by 96% at high SNRI and by 76% at low SNRI .

The use of the estimated acquisition grid ~GGa (using

SNRT) instead of ĜGa improves significantly the per-

formance of the method at SNRI ¼ 50. The global
performance is better than the rotation correction per-

formance because with the particular parameters cho-

sen, the translation artefacts are stronger than the

rotation artefacts.

The efficiency of the proposed algorithm to restore

images from motion-corrupted data is qualitatively il-

lustrated in Fig. 5. Two data sets have been acquired with

a gradient-recalled echo (GRE) sequence (TE/TR¼ 40/
2000 ms). During the first acquisition, the subject has

been asked not to move. This data set serves as the ref-

erence k-space acquisition. During the second acquisi-
tion, the subject has been requested to rotate the head

around the caudo-cranial axis between successive profile
measurements in k-space. Fig. 5a shows the reference
image. In Fig. 5b, motion artefacts are visible at the

bottom of the image. They are more visible in the dif-

ference image (b–a) in Fig. 5d. Fig. 5c shows the image

after motion correction and Fig. 5e, the difference image

(c–a). Reduction of motion artefacts is clearly visible.

Quantitatively, the reduction rate RNRMSE equals 50%.
4. Discussion

The goal of this paper was to develop a novel algo-

rithm for restoring images from data corrupted by

subject motion during the acquisition. We have pre-

sented a powerful and automatic method for accurately

estimating the intra-scan motion parameters and re-
constructing the image from the estimated sample po-

sitions. The method relies on the information in k-space
only. In order to reconstruct an image from data dis-

torted by rotations, we used a Bayesian estimator which

has proven particularly efficient in handling pseudo-

randomly sampled and under-sampled k-spaces. The
accuracy of motion estimates assessed by Monte Carlo

studies is excellent, better than 0.1� for rotation, and 0.1
and 0.05 pixel, respectively, for translation along the

read and phase directions for signal-to-noise ratios

higher than 6 of the signals on each trajectory. The al-

gorithm reduces the distortion due to rotation down to

the noise level.
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Estimation of intra-scan motion parameters requires
a reference image. Since motion can distort all images

within a series, using one of the images of the series as a

reference allows correction of relative intra-scan motion

only. It is therefore obvious that the quality of the

correction will critically depend on the quality of the

reference image. Conversely, if the reference image is

motion-free, absolute motion correction is possible. Our

algorithm corrects, in a first step, the effects due to intra-
scan translation that occurred during acquisition of the

reference image. This significantly improves the sub-

sequent estimation of the rotation parameters [35].

Conceptually, our 2D method may be extended to 3D

EPI-like acquisitions. If intra-scan motion during the

signal read-out is neglected (a reasonable assumption,

given the short signal readout times), rotation will affect

orientation of the acquisition planes in k-space, while
translation will introduce a linear phase shift along the

corresponding reciprocal direction. Thus, motion results

in irregular sampling of 3D k-space and the tilted linear
trajectories in the 2D case now become tilted planes. Six

motion parameters per plane (three for translation and

three for rotation) need then to be estimated. The ex-

tension to 3D raises the issue of computational efficiency

to estimate these six parameters, in particular the rota-
tion angles. The 3D gridding or chirp-z algorithm [38]

could therefore be used in the rotation estimation step to

rotate the reference acquisition. The reconstruction of

the 3D images from irregularly sampled k-space could
then be handled by our 3D version of the Bayesian es-

timator [27,39].

Potential applications of the method may lie in 3D

EPI-like fMRI. Also, the quality of averaged imaging
volumes should benefit from applying intra-scan motion

correction.
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